翻訳と辞書
Words near each other
・ Somogytúr
・ Somogyudvarhely
・ Somogyviszló
・ Somogyvámos
・ Sommerance
・ Sommerau
・ Sommerberg (Taunus)
・ Sommerbergbahn
・ Sommerblut
・ Sommerdag ved Roskilde Fjord
・ Sommerein
・ Sommerer
・ Sommereux
・ Sommerfeld (crater)
・ Sommerfeld (disambiguation)
Sommerfeld expansion
・ Sommerfeld identity
・ Sommerfeld number
・ Sommerfeld parameter
・ Sommerfeld radiation condition
・ Sommerfeld Tracking
・ Sommerfeldt
・ Sommerfeldtbukta
・ Sommerfeld–Kossel displacement law
・ Sommerfelt
・ Sommerfeltia
・ Sommerfuggel i vinterland
・ Sommerhausen
・ Sommerheim Park Archaeological District
・ Sommeri


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Sommerfeld expansion : ウィキペディア英語版
Sommerfeld expansion
A Sommerfeld expansion is an approximation method developed by Arnold Sommerfeld for a certain class of integrals which are common in condensed matter and statistical physics. Physically, the integrals represent statistical averages using the Fermi–Dirac distribution.
When the inverse temperature \beta is a large quantity, the integral can be expanded〔.〕〔http://www.physik.uni-regensburg.de/forschung/fabian/pages/mainframes/teaching/teaching_files/files%20of%20mf_statistical_physics/Sommerfeld.pdf〕 in terms of \beta as
:\int_^\infty \frac\,\mathrm\varepsilon = \int_^\mu H(\varepsilon)\,\mathrm\varepsilon + \frac\left(\frac\right)^2H^\prime(\mu) + O \left(\frac\right)^4
where H^\prime(\mu) is used to denote the derivative of H(\varepsilon) evaluated at \varepsilon = \mu and where the O(x^n) notation refers to limiting behavior of order x^n. The expansion is only valid if H(\varepsilon) vanishes as \varepsilon \rightarrow -\infty and goes no faster than polynomially in \varepsilon as \varepsilon \rightarrow \infty.
== Application to the free electron model ==
Integrals of this type appear frequently when calculating electronic properties in the free electron model of solids. In these calculations the above integral expresses the expected value of the quantity H(\varepsilon). For these integrals we can then identify \beta as the inverse temperature and \mu as the chemical potential. Therefore, the Sommerfeld expansion is valid for large \beta (low temperature) systems.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Sommerfeld expansion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.